Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.947
Filtrar
1.
Hig. Aliment. (Online) ; 38(298): e1144, jan.-jun. 2024.
Artículo en Portugués | LILACS, VETINDEX | ID: biblio-1531444

RESUMEN

As falhas na higienização em um estabelecimento de alimentos podem refletir em problemas causando a contaminação ou deterioração do produto produzido. Esta pesquisa foi motivada por reclamações de consumidores informando que os queijos apresentaram fungos, mesmo estando dentro do prazo de validade e por solicitação do Serviço de Inspeção Municipal. O objetivo desta pesquisa foi avaliar a contaminação ambiental em uma agroindústria da agricultura familiar produtora de queijo colonial no Sudoeste Paranaense. Foram realizadas a contagem para aeróbios mesófilos em equipamentos e superfícies que entram em contato com o alimento e análise microbiológica ambiental de bolores e leveduras na sala de secagem dos queijos. A coleta foi realizada com método de esfregaço de suabe estéril para aeróbios mesófilos e semeadas em placas de Petri com Ágar Padrão de Contagem. Para a coleta ambiental foram expostas placas de Petri com ágar Saboraund durante 15 minutos. Os resultados demonstraram ausência de contaminação nas superfícies, mas foram encontrados bolores e leveduras de forma acentuada na sala de secagem dos queijos, o que pode contribuir para a deterioração do produto, diminuindo sua validade. Para minimizar as perdas por contaminação é necessário que o processo de higienização dos ambientes seja realizado de forma eficiente.


Failures in hygiene in a food establishment can result in problems causing contamination or deterioration of the product produced. This research was motivated by complaints from consumers reporting that the cheeses had mold, even though they were within their expiration date and at the request of the Municipal Inspection Service. This research was to evaluate environmental contamination in an agroindustry in the family farm producing colonial cheese in Southwest Paraná. For the microbiological assessment of environmental contamination, counting for mesophilic aerobes was carried out on equipment and surfaces that come into contact with food and, environmental microbiological analysis of molds and yeast in the cheese drying room. The collection was carried out using the sterile swab smear for mesophilic aerobes and seeded in Petri dishes with Counting Standard Agar. For environmental collection, sheets of Petri with Saboraund agar for 15 minutes. The results demonstrated absence of contamination on surfaces. But the presence of molds and yeasts in the drying room cheeses, which can contribute to the deterioration of the product and thus reduce the validity. To minimize losses due to contamination, it is It is necessary that the process of cleaning and disinfecting environments is carried out efficiently.


Asunto(s)
Higiene Alimentaria , Queso/microbiología , Brasil , Buenas Prácticas de Fabricación , Enfermedades Transmitidas por los Alimentos/prevención & control
2.
Food Res Int ; 186: 114306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729707

RESUMEN

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Asunto(s)
Aminoácidos , Aminas Biogénicas , Queso , Proteolisis , Queso/microbiología , Queso/análisis , Aminoácidos/análisis , Aminoácidos/metabolismo , Aminas Biogénicas/análisis , Microbiología de Alimentos , Manipulación de Alimentos/métodos , Leuconostoc/metabolismo , Leuconostoc/crecimiento & desarrollo , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Nitrógeno/análisis , Calidad de los Alimentos , Fermentación
3.
BMC Infect Dis ; 24(1): 493, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745170

RESUMEN

BACKGROUND: Diet plays an important role in Helicobacter pylori (HP) infection, and our objective was to investigate potential connections between dietary patterns, specific food groups, and HP infection status in U.S. adults. METHODS: The data for this study was obtained from the NHANES (National Health and Nutrition Survey) database for the year 1999-2000. This cross-sectional study involved the selection of adults aged 20 years and older who had undergone dietary surveys and HP testing. Factor analysis was employed to identify dietary patterns, and logistic regression models were utilized to assess the association between these dietary patterns and specific food groups with HP infection status. RESULT: Based on the inclusion and exclusion criteria, our final analysis included 2,952 individuals. The median age of participants was 51.0 years, and 48.7% were male. In the study population, the overall prevalence of HP infection was 44.9%. Factor analysis revealed three distinct dietary patterns: High-fat and high-sugar pattern (including solid fats, refined grains, cheese, and added sugars); Vegetarian pattern (comprising fruits, juices, and whole grains); Healthy pattern (encompassing vegetables, nuts and seeds, and oils). Adjusted results showed that the high-fat and high-sugar pattern (OR = 0.689, 95% CI: 0.688-0.690), vegetarian pattern (OR = 0.802, 95% CI: 0.801-0.803), and healthy pattern (OR = 0.717, 95% CI: 0.716-0.718) were all linked to a lower likelihood of HP infection. Further analysis of the high-fat and high-sugar pattern revealed that solid fats (OR = 0.717, 95% CI: 0.716-0.718) and cheese (OR = 0.863, 95% CI: 0.862-0.864) were protective factors against HP infection, while refined grains (OR = 1.045, 95% CI: 1.044-1.046) and added sugars (OR = 1.014, 95% CI: 1.013-1.015) were identified as risk factors for HP infection. CONCLUSION: Both the Vegetarian pattern and the Healthy pattern are associated with a reduced risk of HP infection. Interestingly, the High-fat and High-sugar pattern, which is initially considered a risk factor for HP infection when the score is low, becomes a protective factor as the intake increases. Within this pattern, animal foods like solid fats and cheese play a protective role, while the consumption of refined grains and added sugars increases the likelihood of HP infection.


Asunto(s)
Queso , Infecciones por Helicobacter , Helicobacter pylori , Encuestas Nutricionales , Humanos , Masculino , Estudios Transversales , Infecciones por Helicobacter/epidemiología , Persona de Mediana Edad , Femenino , Queso/microbiología , Adulto , Dieta , Grasas de la Dieta , Anciano , Adulto Joven , Prevalencia , Factores de Riesgo , Estados Unidos/epidemiología , Conducta Alimentaria
4.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695399

RESUMEN

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Asunto(s)
Suero de Mantequilla , Queso , Cabras , Lipidómica , Suero Lácteo , Animales , Suero de Mantequilla/análisis , Queso/análisis , Suero Lácteo/química , Fosfolípidos/análisis , Fosfolípidos/química , Glucolípidos/química , Leche/química , Gotas Lipídicas/química , Glicoproteínas/química , Glicoproteínas/análisis , Lípidos/química , Lípidos/análisis
5.
J Agric Food Chem ; 72(19): 11072-11079, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699886

RESUMEN

Gouda-type cheeses were produced on a pilot-scale from raw milk (RM-G) and pasteurized milk (PM-G). Sixteen key aroma compounds previously characterized by the sensomics approach were quantitated in the unripened cheeses and at five different ripening stages (4, 7, 11, 19, and 30 weeks) by means of stable isotope dilution assays. Different trends were observed in the formation of the key aroma compounds. Short-chain free fatty acids and ethyl butanoate as well as ethyl hexanoate continuously increased during ripening but to a greater extent in RM-G. Branched-chain fatty acids such as 3-methylbutanoic acid were also continuously formed and reached a 60-fold concentration after 30 weeks, in particular in PM-G. 3-Methylbutanal and butane-2,3-dione reached a maximum concentration after 7 weeks and decreased with longer ripening. Lactones were high in the unripened cheeses and increased only slightly during ripening. Recent results have shown that free amino acids were released during ripening. The aroma compounds 3-methylbutanal, 3-methyl-1-butanol, and 3-methylbutanoic acid are suggested to be formed by microbial enzymes degrading the amino acid l-leucine following the Ehrlich pathway. To gain insight into the quantitative formation of each of the three aroma compounds, the conversion of the labeled precursors (13C6)-l-leucine and (2H3)-2-keto-4-methylpentanoic acid into the isotopically labeled aroma compounds was studied. By applying the CAMOLA approach (defined mixture of labeled and unlabeled precursor), l-leucine was confirmed as the only precursor of the three aroma compounds in the cheese with the preferential formation of 3-methylbutanoic acid.


Asunto(s)
Queso , Leche , Odorantes , Pasteurización , Compuestos Orgánicos Volátiles , Queso/análisis , Animales , Leche/química , Leche/metabolismo , Odorantes/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Bovinos
6.
J Agric Food Chem ; 72(19): 11062-11071, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700435

RESUMEN

Gouda cheese was produced from pasteurized milk and ripened for 30 weeks (PM-G). By application of gas chromatography/olfactometry and an aroma extract dilution analysis on the volatiles isolated by extraction/SAFE distillation, 25 odor-active compounds in the flavor dilution (FD) factor range from 16 to 4096 were identified. Butanoic acid, 2- and 3-methylbutanoic acid, and acetic acid showed the highest FD factors, and 2-phenylethanol, δ-decalactone, and δ-dodecalactone were most odor-active in the neutral-basic fraction. Quantitations by stable isotope dilution assays followed by a calculation of odor activity values (OAVs) revealed acetic acid, 3-methylbutanoic acid, butanoic acid, and butane-2,3-dione with the highest OAVs. Finally, an aroma recombinate prepared based on the quantitative data well agreed with the aroma profile of the PM-G. In Gouda cheese produced from raw (nonpasteurized) milk (RM-G), qualitatively the same set of odor-active compounds was identified. However, higher OAVs of butanoic acid, hexanoic acid, and their corresponding ethyl esters were found. On the other hand, in the PM-G, higher OAVs for 3-methylbutanoic acid, 3-methylbutanol, 3-methylbutanal, and butane-2,3-dione were determined. The different rankings of these key aroma compounds clearly reflect the aroma differences of the two Gouda-type cheeses. A higher activity of lipase in the RM-G and higher amounts of free l-leucine in PM-G on the other side were responsible for the differences in the concentrations of some key aroma compounds.


Asunto(s)
Queso , Leche , Odorantes , Olfatometría , Pasteurización , Compuestos Orgánicos Volátiles , Queso/análisis , Leche/química , Odorantes/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Animales , Aromatizantes/química , Bovinos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Gusto
7.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731432

RESUMEN

Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.


Asunto(s)
Queso , Conservación de Alimentos , Derivados de la Hipromelosa , Própolis , Queso/microbiología , Queso/análisis , Própolis/química , Derivados de la Hipromelosa/química , Conservación de Alimentos/métodos , Fenoles/química , Fenoles/análisis , Microbiología de Alimentos , Escherichia coli/efectos de los fármacos
8.
Water Environ Res ; 96(5): e11036, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740567

RESUMEN

The cheese making and vegetable processing industries generate immense volumes of high-nitrogen wastewater that is often treated at rural facilities using land applications. Laboratory incubation results showed denitrification decreased with temperature in industry facility soils but remained high in soils from agricultural sites (75% at 2.1°C). 16S rRNA, phospholipid fatty acid (PLFA), and soil respiration analyses were conducted to investigate potential soil microbiome impacts. Biotic and abiotic system factor correlations showed no clear patterns explaining the divergent denitrification rates. In all three soil types at the phylum level, Actinobacteria, Proteobacteria, and Acidobacteria dominated, whereas at the class level, Nitrososphaeria and Alphaproteobacteria dominated, similar to denitrifying systems such as wetlands, wastewater resource recovery facilities, and wastewater-irrigated agricultural systems. Results show that potential denitrification drivers vary but lay the foundation to develop a better understanding of the key factors regulating denitrification in land application systems and protect local groundwater supplies. PRACTITIONER POINTS: Incubation study denitrification rates decreased as temperatures decreased, potentially leading to groundwater contamination issues during colder months. The three most dominant phyla for all systems are Actinobacteria, Proteobacteria, and Acidobacteria. The dominant class for all systems is Nitrosphaeria (phyla Crenarchaeota). No correlation patterns between denitrification rates and system biotic and abiotic factors were observed that explained system efficiency differences.


Asunto(s)
Queso , Desnitrificación , Microbiología del Suelo , Verduras , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Suelo/química
9.
Microbiome ; 12(1): 78, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678226

RESUMEN

BACKGROUND: Artisanal cheeses usually contain a highly diverse microbial community which can significantly impact their quality and safety. Here, we describe a detailed longitudinal study assessing the impact of ripening in three natural caves on the microbiome and resistome succession across three different producers of Cabrales blue-veined cheese. RESULTS: Both the producer and cave in which cheeses were ripened significantly influenced the cheese microbiome. Lactococcus and the former Lactobacillus genus, among other taxa, showed high abundance in cheeses at initial stages of ripening, either coming from the raw material, starter culture used, and/or the environment of processing plants. Along cheese ripening in caves, these taxa were displaced by other bacteria, such as Tetragenococcus, Corynebacterium, Brevibacterium, Yaniella, and Staphylococcus, predominantly originating from cave environments (mainly food contact surfaces), as demonstrated by source-tracking analysis, strain analysis at read level, and the characterization of 613 metagenome-assembled genomes. The high abundance of Tetragenococcus koreensis and Tetragenococcus halophilus detected in cheese has not been found previously in cheese metagenomes. Furthermore, Tetragenococcus showed a high level of horizontal gene transfer with other members of the cheese microbiome, mainly with Lactococcus and Staphylococcus, involving genes related to carbohydrate metabolism functions. The resistome analysis revealed that raw milk and the associated processing environments are a rich reservoir of antimicrobial resistance determinants, mainly associated with resistance to aminoglycosides, tetracyclines, and ß-lactam antibiotics and harbored by aerobic gram-negative bacteria of high relevance from a safety point of view, such as Escherichia coli, Salmonella enterica, Acinetobacter, and Klebsiella pneumoniae, and that the displacement of most raw milk-associated taxa by cave-associated taxa during ripening gave rise to a significant decrease in the load of ARGs and, therefore, to a safer end product. CONCLUSION: Overall, the cave environments represented an important source of non-starter microorganisms which may play a relevant role in the quality and safety of the end products. Among them, we have identified novel taxa and taxa not previously regarded as being dominant components of the cheese microbiome (Tetragenococcus spp.), providing very valuable information for the authentication of this protected designation of origin artisanal cheese. Video Abstract.


Asunto(s)
Queso , Microbiología de Alimentos , Microbiota , Queso/microbiología , Queso/normas , Microbiota/fisiología , Transferencia de Gen Horizontal/genética , Metagenoma/genética , Farmacorresistencia Microbiana/genética
10.
Ultrason Sonochem ; 105: 106867, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581799

RESUMEN

In this initial study, the impact of thermosonication as an alternative to the traditional fusion in Brazilian cheese spread (Requeijão Cremoso) manufacture was investigated. The effect of ultrasound (US) power was evaluated considering various aspects such as gross composition, microstructure, texture, rheology, color, fatty acid composition, and volatile compounds. A 13 mm US probe operating at 20 kHz was used. The experiment involved different US power levels (200, 400, and 600 W) at 85 °C for 1 min, and results were compared to the conventional process in the same conditions (85 °C for 1 min, control treatment). The texture became softer as ultrasound power increased from 200 to 600 W, which was attributed to structural changes within the protein and lipid matrix. The color of the cheese spread also underwent noticeable changes for all US treatments, and treatment at 600 W resulted in increased lightness but reduced color intensity. Moreover, the fatty acid composition of the cheese spread showed variations with different US power, with samples treated at 600 W showing lower concentrations of saturated and unsaturated fatty acids, as well as lower atherogenicity and thrombogenicity indexes, indicating a potentially healthier product. Volatile compounds were also influenced by US, with less compounds being identified at higher powers, especially at 600 W. This could indicate possible degradation, which should be evaluated in further studies regarding US treatment effects on consumer perception. Hence, this initial work demonstrated that thermosonication might be interesting in the manufacture of Brazilian cheese spread, since it can be used to manipulate the texture, color and aroma of the product in order to improve its quality parameters.


Asunto(s)
Queso , Queso/análisis , Sonicación/métodos , Brasil , Manipulación de Alimentos/métodos , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Ácidos Grasos/química , Color , Temperatura
11.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611811

RESUMEN

Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow's milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples.


Asunto(s)
Queso , Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Lactococcus , Animales , Bovinos , Femenino , Lactobacillales/genética , Leche , Reacción en Cadena en Tiempo Real de la Polimerasa , Lactobacillus delbrueckii/genética , Lactococcus lactis/genética
12.
Open Vet J ; 14(1): 594-603, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633143

RESUMEN

Background: The utilization of chemical preservatives holds the promise of effectively controlling microbial growth in soft cheese. Aim: The first trial aimed to compare the effectiveness of lactobionic acid (LBA) and K-Sorbate in controlling the proliferation of Staphylococcus aureus, Escherichia coli, and mold in white soft cheese. The subsequent part of the study explored the inhibitory effects of K-Sorbate, nisin, and LBA on mold populations in cheese whey. Methods: Two sets of soft cheese were produced. One set was contaminated with S. aureus, while the other was with E. coli, each at concentrations of 1 log CFU/ml and 1 log CFU/100 ml. Different concentrations of LBA were incorporated into these sets of cheese. Similar cheese samples were treated with K-Sorbate. For the subsequent part of the study, it was manufactured and divided into groups that inoculated with LBA with different concentrations, K-Sorbate, and nisin. Results: With higher S. aureus inoculation, by day 18, the positive control exhibited growth exceeding 5 log CFU/g. In contrast, the LBA treatment dropped below limit of detection (LOD) and K-Sorbate yielded 4.8 log CFU/g. While with lower S. aureus inoculation, the positive control reached log CFU/g, while LBA treatment fell below LOD by day 14, and K-Sorbate reached 2.9 log CFU/g. For E. coli inoculation, with higher concentrations, by day 18, the positive control exceeded 5 log CFU/g. Conversely, LBA treatment greatly decreased and K-Sorbate treatment measured 5.1 log CFU/g. With lower E. coli concentrations, the positive control surpassed 3 log CFU/g, yet LBA treatment dropped below LOD by day 3. Mold counts indicated some inhibition with the K-Sorbate treatment, while control groups showed growth. LBA treatments exhibit noticeable growth inhibition. About the other part of the study, the outcomes demonstrated that while growth of mold occurred in the control group, inhibitory effects were apparent in the treatment groups, and significant distinctions existed between K-Sorbate, nisin, LBA treatments, and the control group. Conclusion: Our findings suggest that LBA has the potential to effectively control the growth of E. coli, S. aureus, and mold in soft cheese. Moreover, LBA displays greater preservative efficacy compared to K-Sorbate and nisin.


Asunto(s)
Queso , Disacáridos , Nisina , Animales , Nisina/farmacología , Escherichia coli , Staphylococcus aureus , Recuento de Colonia Microbiana/veterinaria
13.
World J Microbiol Biotechnol ; 40(5): 157, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592517

RESUMEN

This research investigated the physicochemical, microbiological, and bacterial diversity of Jben cheese, a popular artisanal variety in Morocco. The bacterial diversity was explored using culture-independent methods, including temporal temperature gel electrophoresis (TTGE), denaturing gradient gel electrophoresis (DGGE), and high-throughput sequencing (HTS). Significant intra-sample differences were observed for most physicochemical parameters within each milk type, while inter-sample differences occurred between cow and goat cheeses for dry matter and ash. Jben cheese exhibited distinct characteristics, with low pH values of 3.96, 4.16, and 4.18 for cow, goat, and mixed cheeses, respectively. Goat cheeses had higher fat (49.23 g/100 g), ash (1.91 g/100 g), and dry matter (36.39 g/100 g) than cow cheeses. All cheeses displayed high microbial counts, with a notable prevalence of the lactic acid bacteria (LAB) group, averaging 8.80 ± 0.92 log CFU/g. Jben cheese also displayed high contamination levels with total coliforms, faecal coliforms, yeast, and molds. Fatty acid profiling revealed fraudulent practices in Jben cheese marketing, with cow or mixed cheeses sold as goat cheese, as proven by low capric acid concentration. HTS analysis of Jben cheese identified ten genera and twenty-four species, highlighting Lactococcus lactis as predominant. TTGE and DGGE confirmed the presence of L. lactis but failed to provide the detailed profile achieved through HTS analysis. HTS has been demonstrated to be more reliable, whereas TTGE/DGGE methods, though informative, were more time-consuming and less reliable. Despite limitations, the combined use of TTGE, DGGE, and HTS provided a comprehensive view of indigenous bacterial communities in Jben cheese, identifying L. lactis as the main species.


Asunto(s)
Queso , Animales , Bovinos , Femenino , ARN Ribosómico 16S/genética , Temperatura , Electroforesis , Cabras , Saccharomyces cerevisiae
14.
Nutr Diabetes ; 14(1): 15, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594262

RESUMEN

BACKGROUND: We assessed the possible effect of usual dairy consumption on pre-diabetes (Pre-DM) remission or progression to type 2 diabetes (T2D). METHODS: Pre-DM adults (n = 334, mean age of 49.4 years, and 51.5% men) were assessed for dairy intakes (2006-2008) and followed up to 9 years for incidence of T2D or normal glycemia (NG). All biochemical measurements were done at baseline and all subsequent examinations with 3-y follow-up intervals. Multinomial regression models with adjustment of confounding variables were used to estimate odds ratios (OR) and 95% confidence intervals (CIs) of incident T2D and NG for each serving/d dairy consumption. RESULTS: The odds of NG was significantly elevated by 69% (OR = 1.69, 95% CI = 1.00-2.86, P = 0.05) per 200 g/d increased high-fat dairy intake, while the amount of total dairy or low-fat dairy was not related to the outcomes. Higher intakes of yogurt were more likely to be associated with an increased odds of NG (OR = 1.82, 95% CI = 1.20-2.74, P = 0.01). Usual intakes of milk, cheese, or cream-butter were not associated to Pre-DM remission or progression to T2D. CONCLUSION: Regular dairy consumption may increase the chance of Pre-DM regression to NG.


Asunto(s)
Queso , Diabetes Mellitus Tipo 2 , Estado Prediabético , Masculino , Adulto , Humanos , Persona de Mediana Edad , Femenino , Animales , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Estado Prediabético/epidemiología , Estudios de Seguimiento , Leche , Dieta , Factores de Riesgo
15.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38573828

RESUMEN

There is growing interest in using autochthonous lactic acid bacteria (LAB) that provide unique sensory characteristics to dairy products without affecting their safety and quality. This work studied the capacity of three Brazilian indigenous nonstarter LABs (NSLAB) to produce biogenic amines (BAs) and evaluated their effect on the volatile organic compounds (VOCs), microbial LAB communities, and physicochemical profile of short-aged cheese. Initially, the strain's potential for biosynthesis of BAs was assessed by PCR and in vitro assays. Then, a pilot-scale cheese was produced, including the NSLAB, and the microbial and VOC profiles were analyzed after 25 and 45 days of ripening. As a results, the strains did not present genes related to relevant BAs and did not produce them in vitro. During cheese ripening, the Lactococci counts were reduced, probably in the production of alcohols and acid compounds by the NSLAB. Each strain produces a unique VOC profile that changes over the ripening time without the main VOCs related to rancid or old cheese. Particularly, the use of the strain Lacticaseibacillus. paracasei ItalPN16 resulted in production of ester compounds with fruity notes. Thus, indigenous NSLAB could be a valuable tool for the enhancement and diversification of flavor in short-aged cheese.


Asunto(s)
Queso , Lactobacillales , Compuestos Orgánicos Volátiles , Lactobacillales/genética , Queso/microbiología , Compuestos Orgánicos Volátiles/análisis , Brasil , Lactobacillus
16.
Food Microbiol ; 121: 104514, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637076

RESUMEN

The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.


Asunto(s)
Queso , Productos Lácteos Cultivados , Lactococcus lactis , Animales , Proteoma/metabolismo , Fermentación , Queso/microbiología , Leche/microbiología , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
17.
Food Microbiol ; 121: 104521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637083

RESUMEN

Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.


Asunto(s)
Queso , Lactobacillus delbrueckii , Lactobacillus helveticus , Suero Lácteo , Queso/microbiología , Microbiología de Alimentos , Proteína de Suero de Leche/análisis , Streptococcus thermophilus/genética
18.
Food Microbiol ; 121: 104531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637091

RESUMEN

The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products.


Asunto(s)
Queso , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Staphylococcus aureus/genética , Queso/microbiología , Brasil , Microbiología de Alimentos , Acero Inoxidable/análisis , Enterotoxinas/genética , Leche/microbiología
19.
Open Vet J ; 14(3): 779-786, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38682148

RESUMEN

Background: Milk-borne bacteria cause degradation of milk products and constitute a significant risk to public health. Aim: The objectives of the present study are to determine the microbiological quality of dairy products and to investigate pathogenic microorganisms. Methods: A total of 60 samples of raw milk, homemade cheese, and yogurt were randomly selected from different retail marketplaces in Basrah. The bacteriological and biochemical tests were utilized to identify the pathogens in dairy samples, as well as the molecular technique was used as an accurate diagnostic test. Results: The prevalence of contamination of milk products with various isolates was estimated as 50% (95% Cl: 36.8-63.2). The mean of total bacteria count for cheese was 7.29 ± 2.70, raw milk 4.62 ± 2.86, and yogurt 2.87 ± 1.05, with a significant p-value (p = 0.001). The mean count of aerobic spore-forming (ASF) contaminated raw milk was analyzed as 3.77 ± 1.18 and less contamination detected in the yogurt samples with mean of ASF was estimated as 2.52 ± 1.47 SD log 10 CFU/ml. A range of important microorganisms to human health were identified by employing the VITEK_2 system and sequencing 16S rDNA gene, including Staphylococcus aureus, Escherichia coli, Pseudomonas aerogenosa, and Bacillus cereus. Conclusion: The study indicates that there is a high level of bacterial contamination in dairy products with different bacteria species, which is medically important. Therefore, food safety management must be implemented to reduce biological risks carried by dairy products and ensure healthy food for consumers.


Asunto(s)
Productos Lácteos , Microbiología de Alimentos , Leche , Animales , Productos Lácteos/microbiología , Microbiología de Alimentos/estadística & datos numéricos , Leche/microbiología , Medición de Riesgo , Irak/epidemiología , Queso/microbiología , Bacterias/aislamiento & purificación , Bacterias/clasificación , Yogur/microbiología
20.
J Agric Food Chem ; 72(17): 9567-9580, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38627202

RESUMEN

Monascus is a filamentous fungus that has been used in the food and pharmaceutical industries. When used as an auxiliary fermenting agent in the manufacturing of cheese, Monascus cheese is obtained. Citrinin (CIT) is a well-known hepatorenal toxin produced by Monascus that can harm the kidneys structurally and functionally and is frequently found in foods. However, CIT contamination in Monascus cheese is exacerbated by the metabolic ability of Monascus to product CIT, which is not lost during fermentation, and by the threat of contamination by Penicillium spp. that may be introduced during production and processing. Considering the safety of consumption and subsequent industrial development, the CIT contamination of Monascus cheese products needs to be addressed. This review aimed to examine its occurrence in Monascus cheese, risk implications, traditional control strategies, and new research advances in prevention and control to guide the application of biotechnology in the control of CIT contamination, providing more possibilities for the application of Monascus in the cheese industry.


Asunto(s)
Queso , Citrinina , Contaminación de Alimentos , Monascus , Monascus/metabolismo , Monascus/química , Queso/microbiología , Queso/análisis , Citrinina/análisis , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Humanos , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA